GENERALIZED ZETA FUNCTIONS

TIAN-XIAO HE

Dedicated to Professor Leetsch C. Hsu on the Occasion of his 90th Birthday

Abstract. We present here a wide class of generalized zeta function in terms of the generalized Möbius functions and its properties.

1. INTRODUCTION

For any integer $z \in \mathbb{C}$, a Fleck-type generalized Möbius function (cf. [3] or [7]) of order z can be defined by

$$
\mu_z(n) := \Pi_p(-1)^{e_p(n)} \left(\frac{z}{e_p(n)} \right)
$$

(1.1)

for any $n \in \mathbb{N}$, where p runs through all the prime divisors of n, and $e_p(n) = \text{ord}_p(n)$ denotes the highest power k of p such that p^k divides n. Obviously, $\mu_1(n) = \mu(n)$, $n \in \mathbb{N}$, is the classical Möbius function: $\mu(1) = 1$; if n is not square free then $\mu(n) = 0$; if n is square free and if q is the number of distinct primes dividing n, then $\mu(n) = (-1)^q$. In addition, (1.1) implies

$$
\mu_0 = \Pi_{p|n}(-1)^{e_p(n)} \left(\frac{0}{e_p(n)} \right) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}
$$

and

$$
\mu_{-1} = \Pi_p(-1)^{e_p(n)} \left(\frac{-1}{e_p(n)} \right) = \Pi_{p|n} \frac{(e_p(n))!}{(e_p(n))!} = 1.
$$

It is easy to verify that for each complex number α, μ_α is a multiplicative function, but is not complete multiplicative except μ_0, which is complete multiplicative. The generalized zeta function, denoted by ξ_z, is defined accordingly by

$$
\xi_z(s) = \frac{1}{\sum_{n \geq 1} \frac{\mu_z(n)}{n^s}},
$$

(1.2)
where $z \in \mathbb{C}$. Hence, $\xi_1 = \xi$ the classical zeta function. And $\xi_0 = 1$.

Remark 1.1. $\xi_z(s)$ defined in (1.2) can be extended to \mathbb{C}. However, throughout this note, we do not consider the zero points of $\xi_1(s)$ in its domain, i.e., the points at which $\sum_{n \geq 1} \frac{\mu_1(n)}{n^s}$ diverges to infinite.

In this note, we will show that the set of functions $\xi_\alpha (\alpha \in \mathbb{C})$ forms an Abelian group with the Dirichlet series multiplication followed by a number of applications.

2. GENERALIZED ZETA FUNCTION GROUP

We now recall the definition of the Dirichlet product (or convolution) of two arithmetic functions f and g (cf. [1], [2]).

Definition 2.1. Given two arithmetic functions f and g, the Dirichlet (convolution) product $f \ast g$ is again an arithmetic function which is defined by

$$ (f \ast g)(n) := \sum_{d \mid n} f(d)g \left(\frac{n}{d} \right) = \sum_{d \mid n} f \left(\frac{n}{d} \right) g(d), \quad (2.1) $$

where the summations are taken over all positive divisors d of n.

Definition 2.2. Denote $M := \{ \mu_z : z \in \mathbb{C} \}$, where \mathbb{C} denotes the set of complex numbers. We call M the set of generalized Möbius functions of complex order. The set, denoted by N, of the corresponding nonzero generalized zeta functions of complex order is defined by $N := \{ \xi_z : z \in \mathbb{C} \}$, where ξ_z are presented in (1.2).

From [2] and [5], (M, \ast) forms an Abelian group with identity element μ_0 under the operation $\ast : M \times M \mapsto M$, $\mu_\alpha \ast \mu_\beta = \mu_{\alpha+\beta}$, where $\alpha, \beta \in \mathbb{C}$.

Lemma 2.1. For any given $\alpha, \beta \in \mathbb{C}$, we define $\cdot : N \times N \mapsto N$ by

$$ \xi_\alpha \cdot \xi_\beta = \xi_\gamma $$

for some $\gamma \in \mathbb{C}$ if $\frac{1}{\xi_\alpha} \ast \frac{1}{\xi_\beta} = \frac{1}{\xi_\gamma}$, where \ast is the regular Dirichlet product of Dirichlet series (cf. (2.1) and [8] for more details). Thus, we have

$$ \xi_\alpha \cdot \xi_\beta = \xi_{\alpha+\beta}. $$
Proof. By writing \(1/\xi_\alpha(s) = \sum_{n \geq 1} \frac{\mu_\alpha(n)}{n^s}\), and \(1/\xi_\beta(s) = \sum_{n \geq 1} \frac{\mu_\beta(n)}{n^s}\), we obtain

\[
1/(\xi_\alpha \xi_\beta)(s) = \sum_{n \geq 1} \left(\sum_{d|n} \mu_\alpha(d) \mu_\beta \left(\frac{n}{d} \right) \right) /n^s = \sum_{n \geq 1} (\mu_\alpha \ast \mu_\beta) /n^s
\]

\[
= \sum_{n \geq 1} \frac{\mu_{\alpha+\beta}}{n^s} = 1/\xi_{\alpha+\beta}(s),
\]

which completes the proof. \(\square\)

We now ready to show \((N, \cdot)\) is an Abelian group.

Theorem 2.1. Let \(\cdot\) be the operation define in Lemma 2.1. Then \((N, \cdot)\) is an Abelian group with identity element \(\xi_0 = 1\).

Proof. From Lemma 2.1, we see that \(N\) is closed respect to the operation \(\cdot\). Moreover, for any \(\alpha\) and \(\beta\) \(\in\mathbb{C}\), we have

\[\xi_\alpha \cdot \xi_\beta = \xi_{\alpha+\beta} = \xi_\beta \cdot \xi_\alpha.\]

And for any \(\alpha, \beta\) and \(\gamma\) \(\in\mathbb{C}\),

\[(\xi_\alpha \cdot \xi_\beta) \cdot \xi_\gamma = \xi_{\alpha+\beta} \cdot \xi_\gamma \]

\[
= 1/\sum_{n \geq 1} \left(\sum_{d|n} \mu_{\alpha+\beta}(d) \mu_\gamma \left(\frac{n}{d} \right) \right) /n^s = 1/\sum_{n \geq 1} \frac{\mu_{\alpha+\beta+\gamma}}{n^s} = \xi_{\alpha+\beta+\gamma}(s).
\]

Similarly, \(\xi_\alpha \cdot (\xi_\beta \cdot \xi_\gamma) = \xi_{\alpha+\beta+\gamma}\). Thus, \((\xi_\alpha \cdot \xi_\beta) \cdot \xi_\gamma = \xi_\alpha \cdot (\xi_\beta \cdot \xi_\gamma)\). It is also easy to check \(\xi_\alpha \cdot 1 = 1 \cdot \xi_\alpha = \xi_\alpha\) and \(\xi_\alpha \cdot \xi_{-\alpha} = \xi_{-\alpha} \cdot \xi_\alpha = 1\). Therefore, the theorem is proved. \(\square\)

From Theorem 2.1 and Equation (1.2) we have

Corollary 2.1. For all \(\alpha \in \mathbb{Z}\),

\[\xi_\alpha(s) = (\xi(s))^\alpha,\]

where \((\xi(s))^\alpha := \xi(s) (\xi(s))^{\alpha-1}\).

Theorem 2.2. Group \((M, \ast)\) and \((N, \cdot)\) are isomorphic.

Proof. Mapping \(\phi : M \mapsto N\) is defined by

\[\phi(\mu_\alpha) := \xi_\alpha = 1/\sum_{n \geq 1} \frac{\mu_\alpha(n)}{n^s},\]
where $\alpha \in \mathbb{C}$. It is easy to verify that the mapping is one-to-one and onto. In addition, for any $\alpha, \beta \in \mathbb{C}$,

$$\phi(\mu_\alpha * \mu_\beta) = \phi(\mu_{\alpha+\beta}) = \xi_{\alpha+\beta} = \xi_\alpha \cdot \xi_\beta = \phi(\mu_\alpha) \cdot \phi(\mu_\beta).$$

This completes the proof. \hfill \Box

3. SOME RESULTS FROM GENERALIZED ZETA FUNCTION GROUP

A series $\sum_{n \geq 1} a_n n^{-s}$ is called an arithmetic Dirichlet series if all of its coefficients $a_n = a(n)$ are arithmetic functions.

Theorem 3.1. (Generalized zeta inversion formulae) For any $\alpha \in \mathbb{C}$ and Dirichlet series f and g,

$$f = \xi_\alpha g \iff g = \xi_{-\alpha} f.$$

Moreover, if both $f = \sum_{n \geq 1} f_n n^{-s}$ and $g = \sum_{n \geq 1} g_n n^{-s}$ are arithmetic Dirichlet series, then for any $n \in \mathbb{N}$

$$f(n) = \sum_{d|n} \mu_\alpha \left(\frac{n}{d} \right) g(d) \iff g(n) = \sum_{d|n} \mu_{-\alpha} \left(\frac{n}{d} \right) f(d).$$

Proposition 3.1. For any $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$,

$$\sum_{d|n} \mu_{\alpha-1}(d) = \mu_\alpha(n). \quad (3.1)$$

Proof. From Corollary 2.1

$$\sum_{n \geq 1} \frac{\mu_\alpha(n)}{n^s} = \frac{1}{\xi_\alpha(s)} = \frac{1}{\xi_{\alpha-1}(s)} \sum_{n \geq 1} \frac{\mu_{-1}(n)}{n^s} = \sum_{n \geq 1} \frac{\mu_{-1}(n)}{n^s} \cdot \sum_{n \geq 1} \frac{\mu_\alpha(n)}{n^s} = \sum_{n \geq 1} \sum_{d|n} \mu_{\alpha-1}(d) \mu_{-1}(\frac{n}{d}) / n^s,$$

which leads (3.1) by applying the Dirichlet series multiplication and noting that $\mu_{-1} \equiv 1$. \hfill \Box

Proposition 3.2. Let $f = \sum_{n \geq 1} c_n n^{-s}$, and let all c_n be completely multiplicative functions. For any fixed positive integer α,

$$f^{\alpha-1} \sum_{n \geq 1} \frac{\mu_\alpha(n) c_n}{n^{-s}} = \sum_{n \geq 1} \frac{\mu_\alpha(n) c_n}{n^{-s}}. \quad (3.2)$$
Proof. This follows easily from Proposition 3.1 and mathematical induction on α. In fact, first we have
\[
f \sum_{n \geq 1}^{\infty} \frac{\mu_{\alpha}(n)c_n}{n^{-s}} = \sum_{n \geq 1}^{\infty} \left((\mu_{\alpha}c) * c \right)(n) n^{-s} = \sum_{n \geq 1}^{\infty} \frac{c(n) \sum_{d|n} \mu_{\alpha}(d)}{n^{-s}} = \sum_{n \geq 1}^{\infty} \frac{c(n)\mu_{\alpha-1}(n)}{n^{-s}}.
\]
Secondly, using mathematical induction on α we obtain (3.2). □

It is known (cf., for examples, [4] and [6]) that for any fixed integer $\alpha \geq 1$
\[
\xi_{\alpha}^o(s) = \left(\sum_{n \geq 1}^{\infty} \mu(n)n^{-s} \right)^{\alpha} = \sum_{n \geq 1}^{\infty} r_{\alpha}(n)n^{-s}, \tag{3.3}
\]
where
\[
r_{\alpha}(n) = \sum_{n_1 \cdots n_{\alpha}=n} 1
\]
is the number of ways that n can be written as a product of α fixed factors, so that $r_{\alpha}(n)$ is clearly a multiplicative function of n. In particular, $r_2(n)$ denotes the number of positive divisors of n.

Theorem 3.2. (Characteristic of generalized Möbius functions) For any fixed integer $\alpha \geq 1$, the inverse of μ_{α} in the group (M, \ast) is r_{α}; or equivalently, $r_{\alpha} = \mu_{\alpha}$. Namely, for all integers $n \geq 1$
\[
(r_{\alpha} \ast \mu_{\alpha})(n) = \sum_{d|n} r_{\alpha}(d)\mu_{\alpha}(n/d) = \delta_{n,1}, \tag{3.4}
\]
where $\delta_{n,1} = 1$ if $n = 1$ and 0 otherwise.

Proof. Multiplying $\xi_{\alpha}^o(s)$ shown in (3.3) with
\[
\frac{1}{\xi_{\alpha}(s)} = \frac{1}{\xi_{\alpha}^o(s)} = \sum_{n \geq 1}^{\infty} \frac{\mu_{\alpha}(n)}{n^s}
\]
yields
\[
\sum_{n \geq 1}^{\infty} \frac{(r_{\alpha} \ast \mu_{\alpha})(n)}{n^s} = 1,
\]
which leads $r_{\alpha}(1)\mu_{\alpha}(1) = 1$ and
\[
(r_{\alpha} \ast \mu_{\alpha})(n) = \sum_{d|n} r_{\alpha}(d)\mu_{\alpha}(n/d) = 0
\]
for $n \geq 2$, completing the proof. □
Denote \(F_\alpha(s) = \sum_{n \geq 1} r_\alpha(n) n^{-s} \). Then we obtain
\[
F_\alpha(s) \xi_1 - \alpha(s) = \sum_{n \geq 1} \sum_{d|n} r_\alpha(d) \mu_{1-\alpha} \left(\frac{n}{d} \right) / n^s = \xi(s)
\]
and
\[
F_\alpha(s) \xi_{-\alpha}(s) = (\xi_1)^\alpha(\xi_1)^{-\alpha} = \xi_1^0 = \xi_0(s) = 1,
\]
i.e., identities (3.4) and \(\sum_{d|n} r_\alpha(d) \mu_{1-\alpha} \left(\frac{n}{d} \right) = 1 \). In particular, for \(r_2 = \sum_{d|n} 1 \), the number of positive divisors of \(n \), from \(\mu_{-2}(n) = r_2(n) \) we obtain
\[
F_2(s) \xi_{-1}(s) = 1 \quad \text{and} \quad F_2(s) \xi_{-2}(s) = \xi_0(s) = 1,
\]
i.e.,
\[
\sum_{d|n} r_2(d) \mu \left(\frac{n}{d} \right) = 1 \quad \text{and} \quad \sum_{d|n} r_2(d) \mu_2 \left(\frac{n}{d} \right) = \delta_{n,1}.
\]

ACKNOWLEDGMENTS

The author wish to thank the referee and editor for their helpful comments and suggestions.

REFERENCES